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Abstract

When carrying out any form of precision measurement, early consideration should be given to the uncertainty of the measurement
results. The primary reference document for evaluation is the “ISO Guide to the expression of uncertainty in measurement”. When
dealing with variable measurement data on a continuous scale, the structure and mathematical methods will remain similar over
different instruments, however the specific sources of error and uncertainty will be dependent upon the instrument and nature of
the quantity under study. Various mathematical models are used to calculate uncertainty (such as partial derivatives and the Monte-
Carlo method). In gear measurement BS ISO 18653:2003 addresses traceability, calibration intervals, sources of measurement
uncertainty or errors including mechanical alignment and drift (among others). Basic instrument checks include environmental factors
and methods to evaluate gear uncertainty. The UK National Gear Metrology Laboratory (NGML) utilises the “spreadsheet model” to
evaluate measurement uncertainty. The evaluation of gear dimensions defined in ISO 1328-1:2013 requires specific elements of the
gear (profile, lead or helix, and pitch) to be considered independently, so a series of spreadsheets are utilised. Since each of the
various sources of uncertainty generally have a small number of repeat checks (if any), applying the Welch-Satterthwaite equation
allows effective degrees of freedom (ves) to be calculated for all the sources related to the specific element under study. This will
result in a working model which can calculate a coverage factor (k) based on a confidence interval that will compensate for any

number of repeat measurements (n) from each source, and therefore result in a more statistically sound outcome.
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1. Developing the Uncertainty Budget

When compiling the uncertainty budget for any measurement
process, the general sources to be considered include skills,
equipment, measurand, procedures, software, calculations and
environment. Guidance and case studies are provided by UKAS
[1]. In the world of gears, 1ISO 18653 [2] recommends guidance
for measurement strategy and evaluation procedures for
estimating the measurement uncertainty with calibrated master
gears. When reporting any sources of uncertainty, it is necessary
to list the following for each source: units, mean value (uqs),
distribution type and divisor (*), sensitivity coefficients (c;)
where applicable, and the number of repeated measurements
(n) from each source. We can then calculate the individual
uncertainty (u,) for each of these sources as shown in equation
(1). When the uncertainties from all sources have been
calculated, they can be added in quadrature to find the
combined standard uncertainty (u, (). To find the expanded
uncertainty (U), we simply multiply the combined standard
uncertainty by the coverage factor (k), which is most often two
for the 95% confidence interval. The coverage factor used for the
uncertainty analysis must be reported on all calibration
certificates issued by any UKAS registered laboratory, as it is a
requirement of the relavalent I1SO standard [3].
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2. Uncertainty types

Sources of uncertainty are defined as either type A or type B.
Type A uncertainties are related to random errors, while type B
uncertainties have a connection to systematic errors. Random
error occurs when repeating the measurement provides
randomly different results. If so, the more measurements taken,
the higher the chance we can generally expect to get closer to
the true value. Systematic error is where the same influence
factors affect the results for each of the repeated
measurements. In this case, repeating measurements does not
affect the quality of the result. Here, other methods are needed
to estimate uncertainties due to systematic effects, i.e. different
measurements or calculations. Random errors can be revealed
as we repeat the measurement. Systematic errors can be
revealed when we vary the conditions, whether deliberately or
unintentionally. Type A uncertainty is associated with the
normal distribution, while type B uncertainty is associated with
various other distribution types. The most commonly used
distribution for type B uncertainty at the UK National Gear
Metrology Laboratory (NGML) is the rectangular distribution.

2.1. Dealing with distributions

The central limit theorem [4] states that the sum of a set of
independent random variables will approach a normal
distribution as the size of the sample increases, and regardless
of the population's original distribution (dist) shape. This
theorem assumes that each random variable identifies a source
of uncertainty, that no single source or single distribution



dominates, and that the sample size is large enough. The
coverage factor k=2 comes from basic statistical theory which
states that plus or minus two measures of the calculated metric
of sample standard deviation (o,_;), will cover approximately
95% of the confidence interval. However, where the number of
retests (n) are few (and especially fewer than six which they very
often are), it is advisable to modify the coverage factor. Figure 1
shows the probability density functions (PDF) for the normal and
t-distributions, both of which are symmetrical in shape. Here,
both have a mean of zero and the same standard deviation (SD).
The PDF for the t-distribution is very sensitive when the numbers
of tests or degrees of freedom (df or v) are small. Table 1 shows
a partial reconstruction of the t-table with the critical values at
various confidence intervals. At three degrees of freedom, the
sample standard deviation (or X value), would have to be
multiplied by 3.18 rather than 2 to determine the 95%
confidence interval. At 20 degrees of freedom the value would
be 2.09. At infinite degrees of freedom, the two curves would
become identical.

Figure 1. Normal and, t-distribution (with same mean and SD)
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Table 1 Table of critical values for a two tailed t-test (up to 6 df)

Degrees Confidence | Confidence | Confidence | Confidence
of Interval Interval Interval Interval
freedom 90% 95% 99% 99.5%
(df)

1 6.31 12.71 63.7 63.7

2 2.92 4.30 9.92 31.6

3 2.35 3.18 5.84 12.90

4 2,13 2.78 4.60 8.61

5 2.02 2.57 4.03 6.86

6 1.94 2.45%** 3.71 5.96

3. Applying the Welch-Satterthwaite Equation

When dealing with calculating any uncertainty models and
especially where retest numbers (n) differ between each
uncertainty source, the Welch-Satterthwaite equation (2) can
calculate the effective degrees of freedom (veg) required.
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Here, u; () is the combined standard uncertainty, and u‘txi) is
each individual uncertainty (both raised to the power of 4), while
v; represents the associated individual degrees of freedom from
each source. Table 2 represents a typical spreadsheet model [4],
with three sources of uncertainty identified as a, b, and c. We
first calculate our combined standard uncertainty u, I (the
sum of all individual uncertainties in quadrature), and multiply
this value by our defined coverage factor (k=2) to calculate our
expanded uncertainty (U). Next, the Welch-Satterthwaite

modifications are applied to calculate vsffor a modified
coverage factor k. These calculations are shown in table 3.

Table 2 Calculating Combined Standard Uncertainty

Source | Units | Value | Dist* | Divisor C; n U;
a um 1.000 n 2 1.00 5| 0.224
b um 0.200 r 1.732 1.00 1] 0.115
c °C 2.000 r 1.732 | 0.04** | 1 | 0.046

Ue (3 (the sum of the individual values in quadrature) 0.256

Expanded Uncertainty U (k=2) 0.51

*  n=normal dist with divisor=2, r = rectangular dist and divisor =v3

** calculated by reference to the coefficient of thermal expansion for
the specific measurand material.

Table 3 Coverage factor by effective degrees of freedom

Source | Value | Dist | Divisor C; n U; ut/n
a 1.000 n 2 1.00 | 5| 0.224 0.0005
b 0200 | r 1732 | 1.00 | 1] 0.115 | 0.0002
9 2.000 r 1.732 | 0.04 | 1| 0.046 0.0000

e Combined Standard Uncertainty u, ) 0.256

f Modified Standard Uncertainty ug 16) 0.0043

g Sum of Values (fora, b, and c) 0.0007

Vet =f/9 6.143

Modified Coverage Factor k based upon Vef 2.447

Modified Expanded Uncertainty U (k=2.45) 0.63 pm

4. Observations

The modified value of 2.447 for coverage factor k was found by
applying the function “=TINV(x, y)” in Microsoft Excel®. This
function returns the inverse of the yth percentile of the x values.
In our specific case, x represents the 95% confidence interval
(0.05), and y is our calculated value for ves rounded to the
nearest whole number (6). This rounded value is shown in table
1 (***). We find our modified expanded uncertainty U by
multiplying our modified coverage factor k by the combined

standard uncertainty u, o) Normal practice is to maintain an

appropriate number of decimal places at the spreadsheet stage,
but to round the final uncertainty results to two decimal places.

5. Conclusions

By applying the Welch-Satterthwaite equation modifications we
can offer a more realistic value for the coverage factor for any
number of uncertainty sources with any value of “n”. Initial
studies at the NGML have shown interesting results and further

exploratory trials are being carried out.
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